

 Navigation

 	
 index

 	
 modules |

 	postcodes 0.1 documentation

Postcodes

Postcodes is a small library for getting information about, postcodes
in the UK. At its core, the postcode data is provided by the
Ordnance Survey OS OpenData [http://www.ordnancesurvey.co.uk/oswebsite/products/os-opendata.html] initiative, but this library is actually a
wrapper for a web-service [http://www.uk-postcodes.com/] provided by Stuart Harrison [http://twitter.com/pezholio].

Installation

If you use pip then installation is simply:

$ pip install postcodes

or, if you want the latest github version:

$ pip install git+git://github.com/e-dard/postcodes.git

You can also install Postcodes via Easy Install:

$ easy_install postcodes

Features

Postcodes allows you to do the following:

	Lookup the postcode data associated with a specific postcode;

	Get the nearest postcode data associated to a specific geographical
point;

	Get all of the postcode data within a specific distance to a
geographical point;

	Get all of the postcode data within a specific distance to a
known postcode.

As well as being a thin wrapper over the uk-postcodes [http://www.uk-postcodes.com/] web-service [http://www.uk-postcodes.com/],
Postcodes also provides a simple caching and validation layer, in the
form of the PostCoder object, meaning you don’t have to worry about
keeping track of any previously requested data.

Usage

Postcodes is very simple. Simply create a new PostCoder object and
away you go:

>>> from pprint import PrettyPrinter
>>> from postcodes import PostCoder
>>>
>>> pc = PostCoder()
>>> result = pc.get("SW1A 2TT")
>>> PrettyPrinter(indent=4).pprint(result['geo'])
{ u'easting': u'530283',
 u'geohash': u'http://geohash.org/gcpuvptqwyh4',
 u'lat': u'51.502308',
 u'lng': u'-0.124331',
 u'northing': u'179820'}
>>>

If for any reason you want to use your own caching or validation, you
also have access to the functions in the postcodes module, which are
also documented in the API section.

Returned Data

For each postcode, a Python dictionary is returned containing all the
available data from the Ordanance Survey Code-Point Open dataset.
For example, postcodes.get("W1A 2TT") returns:

{ u'administrative': { u'constituency': { u'code': u'',
 u'title': u'',
 u'uri': u''},
 u'district': { u'snac': u'',
 u'title': u'',
 u'uri': u''},
 u'ward': { u'snac': u'',
 u'title': u'',
 u'uri': u''}},
 u'geo': { u'easting': u'',
 u'geohash': u'',
 u'lat': u'',
 u'lng': u'',
 u'northing': u''},
 u'postcode': u''}

Values have been removed for brevity; all returned types are unicode [http://docs.python.org/library/functions.html#unicode]
stings.

API Documentation

	
postcodes.get(postcode)

	Request data associated with postcode.

	Parameters:	postcode – the postcode to search for. The postcode may
contain spaces (they will be removed).

	Returns:	a dict of the nearest postcode’s data or None if no
postcode data is found.

	
postcodes.get_nearest(lat, lng)

	Request the nearest postcode to a geographical point,
specified by lat and lng.

	Parameters:	
	lat – latitude of point.

	lng – longitude of point.

	Returns:	a dict of the nearest postcode’s data.

	
postcodes.get_from_postcode(postcode, distance)

	Request all postcode data within distance miles of postcode.

	Parameters:	
	postcode – the postcode to search for. The postcode may
contain spaces (they will be removed).

	distance – distance in miles to postcode.

	Returns:	a list of dicts containing postcode data within the
specified distance or None [http://docs.python.org/library/constants.html#None] if postcode is not valid.

	
postcodes.get_from_geo(lat, lng, distance)

	Request all postcode data within distance miles of a
geographical point specified by lat and lng.

	Parameters:	
	lat – latitude of point.

	lng – longitude of point.

	distance – distance in miles to postcode.

	Returns:	a list of dicts containing postcode data within the
specified distance.

The PostCoder Object

	
class postcodes.PostCoder

	The PostCoder object provides state for maintaining a cache of
historical requests. It’s the recommended way to interact with the
underlying web-service.

Because PostCoder caches all previously requested postcode data
it’s fine to repeatedly request the same data as much as you like,
and you don’t need to worry about explicitly storing any data in
your application.

Because the underlying data is not likely to change very much, if
at all, cached postcode data never expires. However, if for some
perverse reason you do want to skip the cache and make an explicit
request for data then you can set skip_cache=True in all of the
available methods.

	
get(postcode, skip_cache=False)

	Calls postcodes.get and by default utilises a local cache.

	Parameters:	skip_cache – optional argument specifying whether to skip
the cache and make an explicit request.
Given postcode data doesn’t really change,
it’s unlikely you will ever want to set this
to True [http://docs.python.org/library/constants.html#True].

	
get_nearest(lat, lng, skip_cache=False)

	Calls postcodes.get_nearest but checks correctness of lat
and long [http://docs.python.org/library/functions.html#long], and by default utilises a local cache.

	Parameters:	skip_cache – optional argument specifying whether to skip
the cache and make an explicit request.

	Raises:	IllegalPointException – if the latitude or longitude
are out of bounds.

	Returns:	a dict of the nearest postcode’s data.

	
get_from_postcode(postcode, distance, skip_cache=False)

	Calls postcodes.get_from_postcode but checks correctness of
distance, and by default utilises a local cache.

	Parameters:	skip_cache – optional argument specifying whether to skip
the cache and make an explicit request.

	Raises:	IllegalPointException – if the latitude or longitude
are out of bounds.

	Returns:	a list of dicts containing postcode data within the
specified distance.

	
get_from_geo(lat, lng, distance, skip_cache=False)

	Calls postcodes.get_from_geo but checks the correctness of
all arguments, and by default utilises a local cache.

	Parameters:	skip_cache – optional argument specifying whether to skip
the cache and make an explicit request.

	Raises:	IllegalPointException – if the latitude or longitude
are out of bounds.

	Returns:	a list of dicts containing postcode data within the
specified distance.

© 2012, Edward Robinson [http://twitter.com/eddrobinson]

 Copyright 2012, Edward Robinson.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	postcodes 0.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	
 	
 postcodes	

 Copyright 2012, Edward Robinson.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	postcodes 0.1 documentation

Index

 G
 | P

G

 	

 	get() (in module postcodes)

 	

 	(postcodes.PostCoder method)

 	get_from_geo() (in module postcodes)

 	

 	(postcodes.PostCoder method)

 	

 	get_from_postcode() (in module postcodes)

 	

 	(postcodes.PostCoder method)

 	get_nearest() (in module postcodes)

 	

 	(postcodes.PostCoder method)

P

 	

 	PostCoder (class in postcodes)

 	

 	postcodes (module)

 Copyright 2012, Edward Robinson.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		
 modules |

 		postcodes 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Edward Robinson.
 Created using Sphinx 1.3.5.

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

